Lampreys live mostly in coastal and fresh waters and are found in most temperate regions except those in Africa. Some species (e.g. Geotria australis, Petromyzon marinus, and Entosphenus tridentatus) travel significant distances in the open ocean, as evidenced by their lack of reproductive isolation between populations. Other species are found in land-locked lakes. Their larvae (ammocoetes) have a low tolerance for high water temperatures, which may explain why they are not distributed in the tropics.
The pharynx is subdivided; the ventral part forming a respiratory tube that is isolated from the mouth by a valve called the velum. This is an adaptation to how the adults feed, by preventing the prey's body fluids from escaping through the gills or interfering with gas exchange, which takes place by pumping water in and out of the gill pouches instead of taking it in through the mouth.
Research on sea lampreys has revealed that sexually mature males use a specialized heat-producing tissue in the form of a ridge of fat cells near the anterior dorsal fin to stimulate females. After having attracted a female with pheromones, the heat detected by the female through body contact will encourage spawning.
Some species, including those that are not carnivorous and do not feed even following metamorphosis, live in freshwater for their entire lifecycle, spawning and dying shortly after metamorphosing. In contrast, many species are anadromous and migrate to the sea, beginning to prey on other animals while still swimming downstream after their metamorphosis provides them with eyes, teeth, and a sucking mouth. Those that are anadromous are carnivorous, feeding on fishes or marine mammals.
In a series of studies by Rovainen and his student James Buchanan, the cells that formed the neural circuits within the spinal cord capable of generating the rhythmic motor patterns that underlie swimming were examined. Note that there are still missing details in the network scheme despite claims by Grillner that the network is characterised (Parker 2006, 2010). Spinal cord circuits are controlled by specific locomotor areas in the brainstem and midbrain, and these areas are in turn controlled by higher brain structures, including the basal ganglia and tectum.
New programs are being developed, including the use of chemically sterilized male lampreys in a method akin to the sterile insect technique. Finally, pheromones critical to lamprey migratory behaviour have been isolated, their chemical structures determined, and their impact on lamprey behaviour studied, in the laboratory and in the wild, and active efforts are underway to chemically source and to address regulatory considerations that might allow this strategy to proceed.